
CS40 HW6 Design Doc (UM)

AdamWeiss (aweiss15) and Auriel Wish (awish01)

Architecture

● Modules:

○ um.c

■ Contains memory structures and calls functions through command loop (in

main)

○ arithmetic.c

■ Contains arithmetic functions such as add and multiply

■ These do not need (and therefore do not have) direct access to memory

segments or registers

○ memory.c

■ Contains functions that manipulate memory segments and have direct

access to segments and registers

■ Module-to-module interaction (used for abstraction since the arithmetic

functions shouldn’t have direct access to registers):

● Function to get value in a register

○ * getRegisterValue

○ * Purpose: Get the value in a register

○ * Parameters: The emulated registers, the desired register

○ * Returns: The value in the requested register

○ * Notes: None

● Function to set the value in the register

○ * setRegisterValue

○ * Purpose: Set the value in a register

○ * Parameters: The registers in the instruction, the register

number to change, the value to put in the register

○ * Returns: None



○ * Notes: None

● Function to gain access to a desired segment

○ * getSegmentLocation

○ * Purpose: Get the location of a memory segment

○ * Parameters: The segment ID

○ * Returns: A pointer to the segment

○ * Notes: None

● How the program works: (see picture below)

○ The memory segments will each be arrays of uint32_t. The segments will be

stored in a sequence such that their index in the sequence will be the same as

their segment ID.

○ Segment 0 will not be in the sequence - it will be its own separate array that gets

passed in as its own argument to functions. This is because we want to make sure

it is placed in a register (or at least as much of it as can fit) because it will be

accessed a lot.

○ Segment IDs for new segments will be assigned as follows:

■ Integer maxSegmentID will keep track of the highest ID that has been

used

■ Sequence recentlyUnmapped will contain all IDs that were once in use but

were then unmapped

● Whenever a segment is unmapped, add its ID to recentlyUnmapped

■ When a new segment is mapped, check to see if recentlyUnmapped has

any IDs in it

● If it does, then use the most recent one as the ID for the new

segment (and remove the ID from recentlyUnmapped)

● If it does not, then use 1 + maxSegmentID as the ID for the new

segment and increment maxSegmentID



○ The 8 registers will be a C array that will contain uint32_t data values. The

choice to make this a C array is based on the idea that the array will have a

constant length (8), so the size can be defined at compile time.

○ After booting up the UM and setting the initial state, main will run a command

loop that will continuously fetch, decode and execute instructions.

■ An instruction is fetched from segment zero.

■ That instruction is decoded into its opcode and registers (and value if

it’s a load value instruction.)

■ The command loop will call a function based on the opcode and pass in

the relevant data and data structures as parameters.

■ The command loop will terminate when it decodes an instruction with the

opcode of HALT.

■ The heap memory of the emulation is then freed and the program finishes.





Implementation

1. Read in original file and place instructions in segment 0

a. Testing: print the words to output (as numbers) as they are put into segment 0.

Since we know what instructions we are inputting, we know what should be

outputted.

2. Initialize all variables (sequences, integers, …etc) to keep track of segments/memory,

IDs, instructions, …etc

3. Create command loop that runs until halt instruction is given

a. Fetch: Get the current instruction using the program counter

i. Testing: Print the current instruction to standard output, convert to binary,

and make sure it is the expected instruction

b. Decode: Write functions to get the opcode and register(s) in the given instructions

i. Testing: Print out the opcode and registers and make sure they match what

was in the printed instruction

c. Execute: Each instruction gets its own function. Note: unit testing is used for

testing these functions. The functions are written and tested in order from top to

bottom because earlier functions will be needed to test later ones.

i. Write the halt function

1. Testing: call halt with other instructions afterward and make sure

that none of them run

ii. Write load value function

1. Testing:

a. Load different values into different registers (not many test

cases for this)

b. Load a value that is greater than 25 bit into a register.

(Should shave off the higher order bits).

iii. Write I/O functions

1. Testing:

a. Output - load different values into registers and output…

i. Typeable ASCII values



ii. Untypeable ASCII values

iii. Value greater than 255 - should fail an assertion

b. Input

i. Typeable ASCII values

ii. Untypeable ASCII values (by piping in file that

contains them)

iii. Pipe file to test end-of-file input, which should enter

-1 into the register

iv. Write arithmetic instructions

1. Testing: all operation solutions will be outputted and compared to

manually performed solutions. This means that ultimately, all test

case solutions will eventually have to be between 0-255 (and

preferably typeable characters)

a. Conditional Move

i. Conditionally move numbers (not many test cases

needed)

b. Multiply

i. Multiply small/medium sized numbers

ii. Multiply numbers whose multiply to a number

greater than 232 (to make sure modulo is done

correctly)

c. Add

i. Add small/medium sized numbers

ii. Add numbers whose sum is greater than 232 (to

make sure modulo is done correctly)

1. Since load value can only go up to 225, use

multiply to get numbers in 2 registers that

are big enough to go past 232 when they are

added together

d. Divide



i. Divide different numbers (we don’t need to account

for dividing by 0, as stated in the spec)

e. Bitwise NAND

i. NAND 2 very large numbers such that all bits after

the 7th least significant bit will end up being 0. This

way, we can easily output the result and make sure

it is correct

v. Write segment handling functions

1. Testing:

a. Map segment (check with valgrind)

i. Map new segment with different amounts of words

ii. Map new segment with 0 words (when accessing

these segments, it is undefined behavior since the

index of the requested word will automatically be

outside of the segment bounds)

iii. Map new segment once segments have been

unmapped (once unmap function is written)

iv. Use segment load and segment store (once written)

to test segment contents

b. Unmap segment (check with valgrind)

i. Unmap one segment

ii. Unmap multiple segments in a row

iii. Map and unmap segments consecutively

iv. Unmap IDs that aren’t mapped (spec says undefined

behavior).

v. Unmap segment 0 (also undefined behavior)

c. Segment Load (check by sending to output)

i. Load words in segment 0

ii. Load words in a newly mapped segment



d. Segment Store (check results using segment load and

sending that to output)

i. Store words in segment 0

ii. Store words in a newly mapped segment

e. Load program (check for deep copy, not just pointer

copying)

i. Load program from segment 0 (should only change

where the program counter points to. Make sure that

the next instruction is the intended instruction)

ii. Load program from other segments with different

lengths

iii. Load program from segments with length 0

(undefined behavior since the program counter will

automatically point to an instruction outside of

segment 0)

4. Free all outstanding memory (segments, sequences, … etc)

a. Testing: valgrind

5. More Architecture testing (function prototypes)

a. void debugPrintRegisters(uint32_t regs[])

i. Prints out the data in the registers array

ii. This will be used to test the getRegisterValue function and the

setRegisterValue function

iii. It will also be called in the fetch decode execute loop so we can make sure

the registers are what we expect them to be

b. void debugRecentlyUnmapped(Seq_t recentlyUnmapped)

i. Prints out all recently unmapped IDs, which are held in a sequence

ii. Makes sure that all IDs that can be reused are placed in the sequence

c. void viewProgram(Um_instruction program[])

i. Prints out the instructions in segment 0, which are in an array of

instructions



ii. This lets us know what each step of the program is supposed to be doing

d. void viewMainMemory(int lowID, highID, Seq_t mainMemory)

i. Prints out the contents of main memory between two segment IDs in a

readable way. Each segment is an array, and each array is in the

mainMemory sequence

1. If a segment has been unmapped in the range, there will be a

special output stating that this is the case

ii. This allows us to see what is in a segment after calling segment store along

with seeing what segments have been mapped within a specific range. The

range of IDs allows for the printing of a small amount of memory instead

of the entire memory every time.


